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This paper presents a modular software design for the construction
of computational modeling technology that will help implement
precision medicine. In analogy to a common industrial strategy used
for preventive maintenance of engineered products, medical digital
twins are computational models of disease processes calibrated to
individual patients using multiple heterogeneous data streams.
They have the potential to help improve diagnosis, prognosis, and
personalized treatment for a wide range of medical conditions.
Their large-scale development relies on both mechanistic and data-
driven techniques and requires the integration and ongoing update
of multiple component models developed across many different
laboratories. Distributed model building and integration requires
an open-source modular software platform for the integration and
simulation of models that is scalable and supports a decentralized,
community-based model building process. This paper presents such a
platform, including a case study in an animal model of a respiratory
fungal infection.

medical digital twin | modular design | multiscale computational model

Type I diabetics now have available a medical device, an “artifi-
cial pancreas.” It is based on a mathematical model of glucose

metabolism calibrated to an individual patient. The model, running
on a smartphone-like device, receives real-time blood glucose levels
from a sensor in the patient, calculates required insulin needs, and
drives a pump attached to the patient that injects the appropriate
dose of insulin (1). The patient gains quality of life and is less likely
to end up in an emergency room with an insulin overdose. The
artificial pancreas is an example of a medical digital twin, in analogy
to a common strategy in industry. As an example, airplane engines
are designed using a complex mathematical model. This model is
then calibrated to an individual engine using real-time performance
data continuously streamed to the manufacturer, becoming that
specific engine’s digital twin. The manufacturer, in consultation with
the airline, can use the digital twin for purposes such as preventive
maintenance recommendations. Human beings are far more com-
plex than airplane engines, but the digital twin concept has a clear
analogy in medicine despite our incomplete understanding of the
determinants of health and disease. In cardiology, prediction using
personalized computational models informs interventions (2). For
other examples, see refs. 3–8.
Digital twins in biomedicine need to evolve continuously to

represent the current state of knowledge and data. A large-scale
implementation of the digital twin paradigm for human health
requires the construction and execution of highly complex models
composed of several component models which span multiple
spatial and temporal scales. To realize the full potential of the
digital twin concept, a flexible software development platform is
needed that enables multidisciplinary and distributed teams to work
together, supports reproducibility, and facilitates the integration
of data and component models. Design patterns common to
“traditional” model implementations impair the development of
integrative digital twins. Some of these patterns include the fol-
lowing: 1) lack of transparency in the implementation of compu-
tational models, 2) intertwined component models and simulation

processes dependent on each other, 3) use of incompatible data
structures and computer languages, 4) brittle architectures that do
not easily accommodate extensions of a model, and 5) software
environments that do not easily support distributed collaboration.
Solutions to these challenges are still largely lacking, not only in
biomedicine (9).
To address these problems, we have developed an approach

based on an open-source, highly modularized computational
representation of a digital twin architecture. While the concept
of modular design of models and software is well established, the
way modules are assembled generally suffers from the short-
comings listed above. The central principle of the architecture
we have developed is the separation of computational algorithms
for the different dynamic processes, eliminating dependencies
that make model modifications and extensions cumbersome or
impossible in complex models. It also features the separation of
computational algorithms from data, in the sense that all data
describing the global model state, including model parameters,
are separate from the individual computational modules in a
“hub-and-spoke” transparent architecture optimally designed to
facilitate extension and modification and web enabled for dis-
tributed collaboration. This approach differs fundamentally from
the conventional approach to building and simulating such models
in biomedicine, as described below.
We demonstrate this design approach and its advantages by

applying it to the published model in ref. 10 of the early immune
response to a respiratory infection by the fungus Aspergillus fumigatus,
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a dimorphic fungus that is ubiquitous and causes difficult-to-treat
infections in immunocompromised patients, with high mortality. The
emergence of strains resistant to first-line antifungal drugs makes the
development of host-centric interventions a high priority. The agent-
based model in ref. 10 could form the basis for a digital twin of some
relevant functions of lung immunity used to simulate interventions
personalized by data characterizing a patient’s immune status. We
restructure this model using the modular design approach. Alto-
gether, the technology we have developed makes it possible to

design, calibrate, validate, and use multiscale computational
models by a distributed team. Additionally, the principles devel-
oped are transferable to many other complex digital twin modeling
scenarios.

Results
The core principle underlying the highly modularized architec-
ture we propose here is to treat each dynamic biological process
in the model, or related collections of processes, as a separate

Fig. 1. Modular model components. The modular design implementation contains four components. (A) The runtime configuration file that contains all
configuration and parameter settings for a given simulation run (“config.ini”). (B) A simulation solver that reads the configuration (config.ini) and constructs,
initializes, and advances the simulation in time by executing each module according to its inherent time scale. (C) The model state contains all data describing
the state of the model at a given point in time, including any physical space geometry, and states of model objects. In this example, the model includes a
spatial component. The model state is a contiguous block of memory as shown by the partitioned rectangle, with the hierarchical Python-referencing syntax
shown to the left of the representation. (D) Each module consists of a computational model that takes all input data from the model state and stores none
itself. (E) These modules extend classes provided as part of the simulation framework, “ModuleState” and “ModuleModel,” which handle the connection to
the simulation solver and model state access, so the developer only needs to consider the biological additions to the model. Extending the ModuleState
results in the fields defined in the extending class being appended to the model state. The “initialize” and “advance” functions in the ModuleModel ex-
tension will be called by the simulation solver, so the module can participate in the simulation.
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module of the digital twin. In a biological context, a molecular
module might contain the algorithms for diffusion and transport
of that molecule, while a cellular one could contain models re-
lated to that cell’s function. The individual modules are only
indirectly connected by communicating through a central data
structure, the global model state, rather than passing data to
each other directly. This prevents any direct dependencies be-
tween the computational portion of modules, a key feature that
enables the model to be readily extended or modified. The global
model state is the repository for all data describing the state of
the simulated model at a given point in time, including any in-
formation about the underlying physical structure, if included,
and variable states of all computational models in the modules.
All computational algorithms, on the other hand, are contained
in the modules, providing a clear separation between the model
and the data on which it operates during model simulation. The
resulting computational structure naturally separates model
components so that they may be validated by the distinct modal-
ities natural for each of the dynamic processes in the model, fa-
cilitating continued model refinement and personalization. Our
implementation contains four components: 1) a runtime configu-
ration file, 2) a global model state, 3) modules, and 4) a simulation
framework that controls simulation runtime and provides data
structures and algorithms useful for the development of modules.
These four components and their relationship are represented in
Fig. 1, providing a coherent and easily discernible structure for the
model components and their dependencies.

Model State. The hub of the model structure is the shared global
model state that integrates all runtime data describing the state
of all components of the model and provides a snapshot in time
of the model simulation. It is the central and only dataset used
during a simulation run. At the same time, it does not contain
any parts of the computational and mathematical instructions of
the model. The model may contain a spatial component, such as
a tissue or organ, represented either abstracted or in physiological
detail. The model state can capture any spatial heterogeneity in
its data structure through a grid or other spatial architecture. As
a digital twin is modified or expanded by either changing or
deleting a dynamic process captured by the model or adding a
new one, the structure of the model state is modified accordingly
by changing or deleting existing data fields or adding new data
fields corresponding to the added biology. The result is a clear
operational separation between the representation of the phys-
ical system of interest and the computational instantiation of the
dynamic processes that drive its temporal evolution and serves as
the basis of any operational predictions. At the same time, the
model state is partitioned in a way that allows individual modules
access to the part of the data that is used as input for their
component model (see below). The technical details can be
found within the Methods.

Modules. As explained, the global model state consists of a data
structure that captures the biology incorporated in the model and
the data characterizing the model state at a given time during a
simulation run. The entire computational infrastructure is con-
tained in a collection of modules, one for each dynamic process
incorporated in the model. Each module consists of a computa-
tional model that takes as input certain data from the model state
used as model input. No data are stored in the modules themselves.
The computational model in the module is simulated by reading
data from the model state, carrying out a model iteration using this
data to obtain a new set of variable states and updating the model
state with the new set of data. This computational model can be a
continuous model such as an ordinary differential equation, a
discrete model such as an agent-based model or Boolean network,
or a hybrid of continuous and discrete components. This sort of
hybridization is accomplished by discretizing space and advancing

the continuous parts of models over time intervals that are punc-
tuated by ticks of the discrete parts. The read/write relationship
connecting the module to the model state is the only connection of
a module to the model. In particular, there is no direct interaction
between the different modules. The resulting hub-and-spoke
model/software structure is transparent and avoids the type of
cross-module dependencies that would otherwise make module
alteration or addition difficult, as is frequently the case for complex
models in the conventional architecture as shown in Fig. 2. Module
dependencies on particular libraries are explicit as part of the package
installation, contributing to reproducibility of model simulations
and predictions. Another advantage of the modular structure is
the clear separation of the different data types that feed into the
overall model, either one time, periodic, or streaming, as indi-
vidual sensors or experiments typically correspond to individual
dynamic processes.
In order to provide a common interface for modules to in-

teract with the model state, each module is expected to provide a
“ModuleState” subclass that defines the data structures relevant
to that module to be stored within the model state. This subclass
object resembles a standard Python “dataclass” with additional
validation and serialization methods. The Discussion section below
includes a discussion of interfaces with other programming lan-
guages. Simple scalar values such as integer or floating-point num-
bers, Boolean values, strings, and NumPy arrays (11) of the same
can be added directly to this object handled by the superclass
implementation. The ModuleState object plays the largest role in
eliminating the extensibility issues that plague conventional
implementations. It does this by preventing function calls as a
means of interaction between component models and between
models and data. Instead of utilizing another class’s functional
application programming interface (API), each module presents
a pure data API in which each module’s model interacts only
indirectly with other modules through reading and writing to the
global model state. The key consequence of this structure is that
changes in the computational algorithms included in a given
module have no effect on the algorithms of other modules, only
on their parameters and data. This makes the entire architecture
robust to algorithmic modifications and to expansion of the
model by other modules and features. In a conventional imple-
mentation, such modifications require extensive effort to account
for downstream effects in the program structure.

Model Simulation. The fundamental operation to be carried out
with a model is to specify an initial configuration of the model
state and apply the computational algorithms in the modules in
discrete time steps to simulate the evolution of the model state
from this initial state. This operation is carried out by the sim-
ulation solver, one of the components of the simulation frame-
work. The solver contains an execution loop that advances the
simulation in time by executing each module according to its
inherent time scale. The simulation is divided into three stages:
construction, initialization, and time stepping. During construc-
tion, the runtime configuration file, a file with general simulation
configuration information (simulation length, global time step,
modules to include, etc.) and all parameters for the models inside
each module for a given simulation run, is read and all necessary
memory is allocated within the model state. During the second
stage, each module accesses the model state and reads all pa-
rameters specific to its setup, the part of the model state needed to
initialize its computational algorithms, and any other needed setup
information provided by the runtime configuration file.
During the third and final stage, the simulation begins looping

through time iterations, passing parts of the model state through
each module one at a time. At this point, a choice needs to be
made about the order in which the modules are executed and
updated. This is a special instance of a more general question
about the simulation of models built from components, and there
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have been several theoretical studies of the impact of different
update orders on model dynamics by us and others; see refs. 12
and 13. The solution typically employed is to choose a particular
order. See Methods for details of our solution to this problem.

Comparison between Modular and Conventional Model Architecture.
As described above, the key difference between conventional
model architectures and the hub-and-spoke modular design we
propose is that it eliminates direct dependencies between different
model components, enabling modification of model components
without having to trace the downstream consequences of changes
in the model logic in one component into other components.
Fig. 2 illustrates this difference for the case of three generic dy-
namic processes that depend on each other.
Lastly, we address the issue of data fields that are common to

several modules, a potential source of problems in conventional
model architectures. Suppose two or more modules have the same
data field as input or output. For instance, two types of immune
cells, A1 and A2, may synthesize and secrete the same cytokine
(C). In addition, another module A3 might modify C through a
partial differential equation (PDE) model that simulates the dif-
fusion of C in space. The global model state contains a unique

data field for C that is read and/or modified by all three modules.
No duplication of data occurs, even as further modules are added
that also utilize C. If one of the modules is removed, then only its
effect on C is removed rather than C itself. Technically, this re-
moval is accomplished by disabling both the initialize and advance
functions for the module being removed, thereby removing ev-
erything related to that module’s computational model but pre-
serving the model state. Thus, there is no true ownership of data
fields by modules in the model, thereby avoiding issues of data
field duplication as well as loss of data fields through the removal
of modules.

A Case Study: The Immune Response to Respiratory Fungal
Infections
In order to provide a concrete illustration of the advantages of
this modular design approach, we apply it to the dynamic com-
putational model in ref. 10. This model captures part of the innate
immune response to the respiratory fungal pathogen A. fumigatus,
the causative agent of invasive aspergillosis, one of the most
common fungal infections in immunocompromised hosts, carrying
a poor prognosis. The increasing use of immunosuppressive
therapies in transplantation and cancer has dramatically increased

Fig. 2. Modular design framework enhancements over conventional model structure. In this simplified scenario, a model consists of three generic processes
with dependencies. In both implementations, processes are separated into three distinct representations, modeled by functions (model_1, model_2, and
model_3) that update data (data_1, data_2, and data_3) at each time step, with interactions indicated by arrows. In the above example, process 1 is inter-
twined with process 2 and process 2 with process 3. While the traditional architecture (Top) results in Class_2 depending on Class_1 (via model_2 depending
on the Class 1 model and data API), the modular architecture (Bottom) results in Module_2 relying only on a subset of the global data defined by Module_1’s
ModuleState (blue data_1). In contrast to the failure to run if model_1 changes in the traditional case, Module_1’s submodel (model_1) can change inde-
pendently of the ModuleState (data_1) and preserve the validity of the Module_2 model (model_2). In the general situation, in which there is a new state that
needs to be added to the module’s ModuleState (1) to support such submodel changes, this will likewise leave the other module (2) unaffected. If there are
parts of the ModuleState (1) to be removed, this is the one case that could require alteration of other modules (2). However, in this case, regardless of the
design, removal of a biological interaction demands that both classes involved be altered. Likewise, if new biology is added affecting multiple classes, both
designs require changes to their models and inputs and outputs.
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suffering and death from this infection, and this trend is expected
to continue. Aspergillus spores are ubiquitous in the environment.
Immunocompetent hosts clear the inhaled spores without develop-
ing disease, but individuals with impaired immunity are susceptible

to a life-threatening respiratory infection that can disseminate to
other organs. The infection is typically initiated by a small number
of inhaled fungal spores that attach to the lung epithelium and
then follow a progression of swelling, germinating, and growing

Fig. 3. Comparison between modular and conventional model implementation. Dependencies between components derived from source code and written
description in the absence of code are outlined. (A) NetLogo model. An object-oriented model with a high level of interconnectedness among components.
(B) Modular design structure. A hub-and-spoke model in which modules (spokes) interact directly only with the shared global state (the hub).

Masison et al. PNAS | 5 of 11
A modular computational framework for medical digital twins https://doi.org/10.1073/pnas.2024287118

CO
M
PU

TE
R
SC

IE
N
CE

S
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 

https://doi.org/10.1073/pnas.2024287118


www.manaraa.com

into hyphal structures that ultimately invade the interstitial space
and vasculature. The innate immune response is triggered by
signaling from resident alveolar macrophages and epithelial cells,
which recruit various immune cells from the circulation, mainly
neutrophils and monocyte-derived macrophages/dendritic cells.
Current therapeutic approaches have been focused primarily

on the pathogen, but a better understanding of the components
of the host defense may lead to the development of new treat-
ments. In particular, restricting iron availability to the pathogen
is a critical mechanism of antimicrobial host defense; conversely,
successful pathogens have evolved potent mechanisms for scav-
enging iron from the host. This competition has the potential to
be harnessed therapeutically. The motivation for the model in
ref. 10 is the development of a simulation tool to explore the role
of iron in invasive aspergillosis across biochemical and biophys-
ical conditions in search of therapeutic mechanisms.
This model can serve as an appropriate use/case for the mod-

ular framework we have described because it incorporates many of
the features found in mechanistic models that might constitute
or be part of a digital twin in biomedicine. Namely, it includes a
multifaceted, multiscale response to a perturbation of a homeostatic
physiological process, the hallmark of a wide range of medical
conditions. As is often the case, an anatomical component, an al-
veolar duct in this case, is involved, providing a spatial component.
Moreover, the model is composed of several component models,
ranging from intracellular models to cell movement in lung tissue
as well as diffusion of several molecules across the tissue. Below,
we describe the model and compare its two implementations, cap-
tured in Fig. 3. We demonstrate that the modular implementation
vastly simplifies its internal complexity. We also demonstrate the
ease of adding new biological components to the model, arguably
the most important advantage of this framework, as it facilitates
the continued expansion and improvement of an existing model.

High-Level Detail of the Model. The model in ref. 10 is a so-called
agent-based model, a widely used framework that is particularly
suitable for modeling spatially heterogeneous processes. It also
typically presents the biggest challenge to model reproducibility
because of the lack of a set of underlying equations. Different
types of “agents,” such as immune cells or fungal spores, navigate
a spatial environment based on a set of rules that also govern the
interaction of agents with each other, such as macrophages
phagocytosing fungal spores. Movement and interactions evolve in
discrete time across the three-dimensional voxelized space, repre-
senting a small portion of lung tissue in our case. Molecules such as
cytokines diffuse across the tissue, also in time- and space-discrete
steps. The model was implemented in the popular agent-based
modeling platform NetLogo (18). Our implementation of the
model is based on the article’s supplemental materials, including a
description of the model in the so-called Overview, Design con-
cepts, and Details protocol (14), a standardized way to describe
agent-based models, which mitigates somewhat the lack of a well-
developed markup language, such as that which exists for ODE
models in systems biology markup language (15). However, im-
portant details and parameters are not included, which makes it
impossible to reproduce model dynamics exactly. We note that
most published models do not include such a description, making
agent-based models notoriously difficult to reproduce (16).

Separation of Dynamic Processes into Modules.We illustrate the key
modular design concepts using the internalization of fungal
spores by epithelial cells in the lining of the alveolar duct. The
structure of the two implementations of this process is shown in
Fig. 3. It involves two agents that can occupy the same voxel, that
is, are in close physical proximity, an epithelial cell and a fungal
cell, and the encounter results in the modification of the states of
both agents. Each agent’s state is determined by a computational
model that takes as input all or some of the data from the model

state that describe the voxel the agent is located in, including data
about other agents present in the voxel. In this example, we will
assume that an epithelial cell as well as a fungal cell are present. In
the implementation in ref. 10, the two agents would exchange data
through their respective APIs, creating a direct dependency be-
tween the two agents and, hence, a dependency between the two
submodels representing the agents.
In contrast, in the modular design, the epithelial cell module

accesses the global model state and extracts data about the voxel
it resides in at that time. Using this data, such as presence of
fungal cells, as input, the module’s model computes a probabi-
listic function determining the action of the epithelial cell. This
action may include phagocytosis of the fungal spore, which is
accomplished by both updating the epithelial cell’s data and by
writing a flag for internalization to the spore’s portion of the
global state. Thus, the fungal cell module and the epithelial cell
module, each containing a computational algorithm, never in-
teract directly but only indirectly through modifications of data
in the model state accessed by both. We emphasize that in this
way neither module depends on the functional API of the other
one to carry out phagocytosis. If changes are made to the model
in the fungal module, they have no effect on the epithelial
module at the level of code. Furthermore, additions of param-
eters or data fields to a model, as a result of new biology, get
simply added to the global state. By contrast, if the epithelial cell
model included a function defined in part by the API of a fungal
cell, such as in ref. 10, then, if that API changed as a result of
new biology being incorporated into that module, every other
module utilizing that API would potentially break during model
execution.

Comparison of Implementations. Our “hub-and-spoke” modular
architecture has several advantages over a conventional model
implementation. In the traditional model, there is a high level of
interconnectedness among components. The model is structured
in an object-oriented way, in which objects model individual types of
actors, each encapsulating its own data and providing functional
API-mediating interactions between it and other parts of the model;
see Fig. 3A. As an example, the A. fumigatus update routine is
expanded to show the five models it contains, dependencies of
which are shown by the arrows to the A. fumigatus update box. The
result is that the simulation space, data, and parameters repre-
senting the model state at a particular time point as well as the
model itself are all tied into object definitions and functions, with
values hidden across agent definitions, the initializations, and the
routines. Understanding of one part of the model requires a de-
veloper to read through most of the source code before attempting
a minor change to a model because of the interconnectedness
leading to brittleness at runtime.
In contrast, the data for the modular structure are contained

entirely in a centralized data structure. We restructured the Net-
Logo model to dismantle the dependencies and conform to the
modular principles. This involves converting routines as repre-
sented in the NetLogo model into modules, the most important
step being a reconceptualization of the object-oriented structure
to separate the dynamic process from the data it operates on. As a
result, the implementation of the submodels contained within the
routines changes, but crucially, the logic is preserved. This can be
seen in Module 2’s replacement of the A. fumigatus update routine
(Fig. 3B). The same five models are implemented but within the
advance function in the modular framework instead of the update
routine. The reduction in dependencies is displayed, as the arrows
are only from modules to data in the model state. A developer
needs only to understand the shared data in the model state, which
are pertinent to a particular module, in order to understand how
to make alterations to the module or to use it for the development
of a new module.
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The modular reimplementation recreates the physical space
over which model dynamics unfold, including a visualization tool
(see also theDiscussion). The fact that the description of the model
in ref. 10 is incomplete, in addition to the fact that the model is
stochastic, makes it challenging to replicate model dynamics ex-
actly. We show in Fig. 4 the corresponding visualizations of the
model as well as the time course evolution of some of the key
model features, such as cell counts and concentrations of different
molecules. The models agree strongly, such that complete infor-
mation and correspondence to actual code is available. The neu-
trophil count serves as an example of this feature. It is most closely
reproduced (Fig. 4B, column 3) because the neutrophil component
of the model was documented fully. There was a code reference
that matched the paper description exactly, and all the parameters
were available in a single location, all on the same scale. Differ-
ences, such as macrophage counts or iron concentration over time,
on the other hand, are due to ambiguities and the lack of infor-
mation in the model description.

Modular Design Facilitates Model Expansion
The modular architecture is specifically designed to make the
process of model expansion and alteration not just feasible but
quite straightforward. We illustrate this simplicity by adding a
module to the modular implementation of the model in ref. 10
that introduces the effect of hepcidin, a hormone synthesized
and secreted mainly by the liver. The innate immune response
uses hepcidin to limit the pathogen’s access to iron by inhibiting
its export from the intracellular space.
To add hepcidin, we need to add the required biology to the

model by incorporating data that capture hepcidin levels and
dynamic processes that correspond to hepcidin biology. The in-
corporation of data will be handled by expanding the model state;
see the center box in Fig. 5. For the purpose of simplicity, hepcidin
will be involved in two processes: 1) its own production and 2)
macrophage iron handling, an important source of iron in this
context. Both of these processes are formalized as submodels
within the hepcidin module. Importantly, for the absorption model
because of the elementary nature of the macrophage model, either
the hepcidin or macrophage module could contain a model in
which macrophage data and hepcidin data are read to determine
iron absorption. However, if there was an intracellular model for
the macrophage within the macrophage module then to expand it
to include hepcidin, the macrophage module would necessarily be
altered as well. Here, again though, no direct dependencies be-
tween the newly added hepcidin module and the macrophage
module are introduced in the process.
The newly added logical relationships in the model architecture

are indicated in red in Fig. 5. An advantage of the modular ar-
chitecture is the minimal coding that must be done to make such
changes. A detailed description can be found in the Methods, in-
cluding Fig. 6 that provides one potential example implementation.

Removing a Module. There are many situations which require the
removal of a module, either temporarily or permanently. For
instance, in a model of the immune response to a pathogen, the
modeler might want to simulate the temporary absence of a cell
type, such as the temporary elimination of neutrophils in a pa-
tient undergoing chemotherapy treatment. This can be accom-
plished by setting all requisite parameters in the model equal to
zero (e.g., the neutrophil recruitment rate), thereby simulating
the module’s absence.
The second method consists of removing a module from the

model altogether for instance, because the computational algorithm
in the module is to be replaced by a different one. This is con-
ceptually different since we are actually modifying the model by
removing or altering the biology that is implemented. This needs
to be done with care, just as in a conventional framework. How-
ever, the structure described here simplifies the task considerably.

Technically, if a module is removed, then its effect on data fields
in the global model state is simply removed. In a conventional
implementation, this might well break the modified model when it
is simulated because of inherent module dependencies. As noted
above, to actually remove the computational model from the
simulation, one can simply disable the initialize and advance
functions of the module containing the model. However, the bi-
ological implications of the module’s removal may of course affect
the model adversely, if not done carefully.

Challenges in Model Reimplementation
Spatial Geometry. To reproduce the model in ref. 10, the first task
was to reproduce the structure of the simulation space and ap-
pend it to the model state. The model loads the space from a file
which was not available, so our simulation space was designed
based on a description of the space’s parameters. As such, both
spaces are 20 × 40 × 20 (16,000 grid cells) and have approxi-
mately the same percentages of tissue types in similar locations
(Fig. 4A). In our model, 19% of the grid cells make up the air
type and 62% comprise nonspecific interstitial tissue cells. For
both spaces, four blood vessels run the length of the space, made
up of blood cells occupying one grid cell each and comprising
∼6% of the grid cells.

Parameters. Determination of parameters also presented a chal-
lenge to replication. There are three sources of algorithm descrip-
tion and model parameter values: the paper, the supplemental
material, and the code. Because of this and the variation between
them, assigning parameter values was not possible in some cases.
The molecule-related parameters are all relative values in which
the quantity has no intrinsic biological value in isolation, but its
relation to other parameters is what determines their importance.
It became clear there were multiple configurations used to gen-
erate the data as some parameters were reported in multiple
places with orders of magnitude difference. Additionally, it was
not always clear what time step (hour versus 20-min steps) pa-
rameter values were based on. To reconcile this, the parameters
were all rescaled to the case in which the cytokine production rate
by the epithelium was 100 units per hour or estimated in relation
to the others when missing.

Validation. Another obstacle to replication came from the lack of
raw data from which to do model validation. The paper provided
several plots on which we used image digitization software,
specifically WebPlotDigitizer (19), to impute the results of simula-
tions. We selected several figures of interest from ref. 10 on which
to base our model replication. These included the main figures from
the paper as well as a selection from the supplemental material.

Discussion
As in industry, medical digital twins will play an important role in
medicine in the future, not only to treat sick patients better but
to prevent them from becoming sick in the first place. The key
ingredients for this to happen are, or soon will be, in place: 1)
an understanding (still incomplete) of human biology and the
homeostatic mechanisms that help us maintain health; 2) ever-
improving data that capture the various determinants of our
health from genomic sequences to behavioral data; 3) the tech-
nologies that allow us to incorporate 1) and 2) into computational
models, both mechanistic and data driven; and 4) the increasingly
common collaboration between the clinical and the computational
sciences needed to create sufficiently credible computational
models that have value in the clinic, as tools like the artificial
pancreas have shown. What is still missing is the technological
infrastructure to combine these ingredients. Unlike the practice
in industry, biological and biomedical research is conducted
largely by individual investigators around the world collaborating
with each other as needed and communicating extensively through
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Fig. 4. (A) Simulation space. Both implementations (nonmodular left and modular right) share a similar simulation space. Both have a pair of alveolar ducts
lined by epithelium branching from a single-source duct (where fungal cells lodge and germinate; green spheres in top row) and four blood vessels that run
across the space parallel to the duct. The blood vessels are the source of recruited macrophages (white spheres), and neutrophils (yellow circles) are recruited
(bottom row). The remaining space is filled with nonspecific interstitial tissue. (B) Simulation results. The panels show the results of both the modular (blue)
and nonmodular (yellow) simulations for fungal cell count, macrophage cell count, and neutrophil cell count in both the normal immune response (Top) and
neutropenic immune response (Bottom). Since both models are stochastic, they were simulated multiple times, beginning with the same initialization, and we
have plotted averages and SDs. In the panels, the solid line is the mean, the long dashed line is one SD above the mean, and the short dashed line is one SD
below the mean for 200 simulations. The figures were created using the code and configuration from release “version 0.1.1.”
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conferences, publications, and social media. While this research
structure maximizes creativity in research, it requires additional
technological infrastructure to “crowdsource” the output of these
individual efforts into a coherent whole, for instance, a model that
combines all the determinants over the course of a viral infection
for an individual patient.
The methodology we present here is an open-source model

architecture that satisfies the requirements for distributed model
building described here. We discuss some shortcomings of the
current version below. It is beyond the scope of this article to
discuss the importance of another essential ingredient of distrib-
uted digital twin construction, namely, a user-friendly information
management system that documents all aspects of the model-
building process. This is key for model credibility and integra-
tion. We have developed such a system that is structured to match
the model structure, making it easy for users to navigate infor-
mation on experiments, data, analysis pipelines, models, literature,
simulation results, and validation. This platform will be published
separately.
The expertise needed for using our platform is well within the

capabilities of most research groups that engage in computational
modeling. The code we provide contains all the components
needed to adopt this architecture. And, most importantly, it does
not require modelers to substantially change their approach to
model building. We took special care to build a tool that has a
shallow learning curve and requires few changes in the varied
practices of individual modeling groups.

The most important current limitation of the platform we have
developed at this time is the fact that all component models in
the modules have to be written in Python. Many different lan-
guages are in use currently for the construction and simulation of
computational models, and it is impractical to limit modelers to a
particular one, de facto imposing a standard for anybody wanting
to use the platform. A future implementation will allow for the
delegation to external programs developed independent of the
main simulation and possibly in different languages. We are
exploring two possible ways in which this can be done. The first is
a containerized system with a standardized system of transferring
data focused on simplicity and flexibility. The other is an efficient
system which allows programs written in one language to call
routines and share data with routines written in another lan-
guage called “Foreign Function Interfaces” (FFIs). These are
supported by a wide variety of languages, including Python, Java,
C/C++, Julia, Fortran, Mathematica, etc., and are commonly
used in the Python programming community to link high per-
formance numerical functions written in C or Fortran to Python
programs (e.g., the NumPy and SciPy libraries). We anticipate
that this will be achievable in the current design because the core
data structure of NumPy objects are expressible as arrays of C
structs, a low-level data type with broad support among FFIs.
Libraries can be developed that wrap the low-level C interface
into other programming languages, and pointers to the simulation
state can be passed directly to external processes through shared
memory, retaining the low overhead of the current approach.
Assuming that the external process can perform computations

Fig. 5. Adding a module to the model. To add the process of hepcidin regulation of macrophage iron handling to the existing model, we only need to create
or change the components highlighted in red; a new module (Module 8: Hepcidin) is added with a ModuleState and ModuleModel definition, a new section
in the configuration file, and any changes to the existing module’s models (Macrophage) required by the incorporation of a new biological factor. Using the
ModuleState and ModuleModel superclasses makes this process of addition very simple, as the only new code is related to the new hepcidin biology, with the
connection to the rest of the simulation handled by the components of the modular framework. The new code will exist in three places: 1) in a listing of the
new model state under the extension of the ModuleState, 2) in the implementation of the “Production model” and “Absorb iron model” within the advance
function, and 3) in the implementation of the initialize function for reading the appropriate values from the configuration file and any other required action
for initialization. During initialization and time stepping, the simulation framework will ensure that the new module state is appended and the new module
receives the full model state to run its models at each time step.
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directly on this shared state, the data abstraction provided should
be capable of executing at near optimal efficiency.

Integrating Discrete and Continuous Models. The framework we
have developed is not specific to agent-based models or, indeed,
discrete models but is generally applicable to all model types, in-
cluding hybrid models. One problem that needs to be solved for
the construction of hybrid models that integrate different model-
ing frameworks is how to transform data types between models.
This problem is the same, whether the model is organized in the
modular structure we have developed, in which all modules de-
posit data in a global model state, or in the conventional way, in
which modules pass data to each other directly. There are several
possible solutions to converting floating-point numbers to cate-
gorical values and vice versa for instance. The choice is up to the
modeler. In our use of the framework, we keep data fields that
have continuous inputs as floating-point numbers, such as the
concentration of a cytokine whose diffusion is governed by a PDE
model. If a module with a Boolean model accesses this data field,
such as macrophages that secrete this cytokine, then the modeler
who built the Boolean model will need to decide how to map zero
and one to floating-point numbers, for instance, by using a
floating-point threshold that separates the two discrete states.

Methods
Modular Architecture.
Iteration. Before any iterations, the solver runs the “initialize” function for
each of the specified modules. After initialization is complete, the solver
uses an event queue iterator to advance simulation time. The event queue is
implemented via Python’s built-in PriorityQueue, which is based on a binary
heap algorithm. The event queue is initialized by setting all modules to run
at time 0. Once initialized, the solver polls the queue for the next module to
advance, advances that module, and adds the module back into the event
queue marked by the next time it should be run based on the “time_step”
parameter for that module, as specified in the configuration file. Any
module with a nonpositive time step is only initialized and not advanced.

This process proceeds iteratively until either the queue contains no further
events or the current time exceeds the desired simulation length. Note that
we do not expect that the queue will run out of events.

A common occurrence is thatmultiplemoduleswill give the same time step
or otherwise have advances which are determined to occur at the same time.
In this case, our algorithm updates the modules in the order in which the
modules dequeue from the event queue. This order is deterministic but is not
necessarily the order of the modules in the configuration file. Future work
will explore other options for iteration schemes.
Model state. The simulation’s shared global model state is implemented as an
instance of the State class found in state.py. This class serves as a runtime
container for simulation configuration/parameters, states of individual
modules, and nonmodule-specific parameters such as the clock and the
geometry of the spatial grid. The module-specific states are stored in in-
stances of subclasses of the base ModuleState class. The ModuleState class is
analogous to a Python “dataclass,” in that its primary function is to store
data and only contains code related to initialization and saving said data.
When extending a model with a new module, users are expected to create
their own subclass of ModuleState. This can be done in a straightforward
manner by listing the fields with type annotations. As part of the initiali-
zation, the State class instantiates each module’s StateClass field of the
ModuleModel implementation, and so, we require that the ModuleState
implementation is set to the StateClass field of the ModuleModel imple-
mentation. This constructor takes a single parameter, the global state. No
default constructor is provided and initialization is expected to be per-
formed in the initialize method of the Module implementation.
Module addition. The conceptual additions to be made to the model to add
hepcidin are shown above in Fig. 5. Here, we describe the practical details of
implementing a hepcidin (or any other) module. The new module is simply a
new Python file named “hepcidin.py” that extends the ModuleState and
ModuleModel, as described in general above. The hepcidin model within the
module consists of two submodels. Since this addition is for demonstration
purposes only, we have chosen a very simple model that relates cytokine
levels to hepcidin levels, a simple equation that converts the total macro-
phage cytokine level into the hepcidin production response, combined with
a probabilistic model that governs the effect on a given macrophage. In
order to illustrate the simplicity of this process, we describe in detail the
template we provide for the code to be added, reproduced in its entirety in
the steps in Fig. 6. To emphasize, the code in Fig. 6 is all that is needed in

Fig. 6. Addition of the Hepcidin module. 1) The hepcidin module must define a subclass of ModuleState, called here “HepcidinState.” Below, all the data
related to the ModuleState (six relevant variables) are simply floating-point numbers, but, as noted above, the type of data could also be integers, Boolean,
strings, and NumPy arrays of these types. 2) The config.ini file must be altered. The path of the new module file “hepcidin.py” (simulation\module-
s\hepcidin.py) is added to the modules field under the simulation heading, in the form simulation.modules.hepcidin. Hepcidin, in which Hepcidin is the class
extending ModuleModel to be coded in the next step. All the parameters relevant to the hepcidin module are given a value under a new “hepcidin” heading.
This section must also include a time_step field, which indicates the period over which the module is to be updated. 3) The third necessary step is to code a
subclass of “ModuleModel,” called here “Hepcidin.” Setting values of the “name” and StateClass field are required. 4) The last step is to code the model by
implementing initialize() and/or advance() functions. The new hepcidin module will have six parameters, each of which are initialized based on the values
provided in the configuration file in the initialize function. Within the “advance” function, all submodels related to the module will be executed. In this
example, this includes calculating values, getting a hepcidin number from the macrophage cytokine level, and absorbing iron where biologically indicated.
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general for the addition of new modules or the replacement of old ones.
The only part that needs to be changed for other modules is the inclusion of
the actual model to be used instead of the simplified ones we show here.

Reproducible Code and Dependencies. Modern code relies on a complex web
of interdependent libraries that are in a constant state of development. For
example, our simulator has dependencies on 16 publicly available libraries,
each of which is either a standard component of Python or available from the
Python package index (https://pypi.org). The continual improvement and
development of these libraries is a positive feature for the scientific com-
munity but presents problems for reproducibility of research. For instance,
changes to the API of a package might eliminate, change the name of, or
change the behavior of a function. Furthermore, coordinating installation
between different operating systems and Python package managers (pip
and conda) can lead to troublesome inconsistencies.

We use pipenv (https://pypi.org/project/pipenv/) to provide a consistent
“virtual environment” for the simulator. Pipenv creates and manages a copy
of the simulator together with specified versions of Python and any package
dependencies which are isolated from any other packages present on the
user’s machine. The specific versions of Python and package dependencies
together, with SHA256 hashes for verification, are listed explicitly in the files
Pipfile and Pipfile.lock. One feature of this is that the user need not manage
the complexity of obtaining various third-party packages by hand. Another
is that by specifying both the version numbers and hashes of libraries it
ensures that, to a high probability, the version of the library that is run on a
user’s machine is identical to that run on our reference platform.

Furthermore, there are issues of portability between operating systems or
even versions and distributions of operating systems and of providing a
straightforward installation method for the software. We address these by
encapsulating our environment in a Docker container (17). A Docker con-
tainer provides a common, standardized virtual Linux environment, allowing
the same code with the same setup to be run on a wide variety of platforms
with minimal setup. Docker is also integrated with the container publishing
platform “dockerhub” (https://hub.docker.com/) on which our simulation
framework is published.
Performance. A particular concern when designing a modular architecture for
performing large-scale simulations is the overhead associated with the soft-
ware abstraction. All abstractions come at a cost of computation efficiency,
and the key to designing an efficient architecture is understanding the source
of the inefficiencies and writing low level constructs that avoid them.

Data access latencies increase bymany orders ofmagnitude switching from
on-die central processing unit (CPU) cache to higher-level storage media.
Roughly speaking, accessing data from CPU cache, random access memory,

solid-state drive, and network costs 10, 100, 105, and 107 clock cycles, re-
spectively. In a design which has an excess of data transference between
modules, the CPU sits idle most of the time, eliminating any benefit of
computational parallelism which might be achieved in a scheme which
isolates module data.

Our goal for the modular design was to eliminate as much of the data
access overhead as possible. To achieve this, we provide a high-level API that
wraps a series of NumPy data structures (11). These data structures are
passed directly to the modules by reference, eliminating the need for any
data copying or disk/network input/output. This effectively reduces the cost
of memory latency for the abstraction to zero.

A natural way to achieve a speed up in computational performance is to
parallelizemodel simulations. Clearly, medical digital twinswill be sufficiently
complex to require parallel computation. Given the nature of what is being
modeled, this is highly nontrivial to do. Efficient parallel algorithms will need
to come from the way processes are modeled, separating temporal and
spatial scales in ways that allow their computational separation. Parallel
execution of model simulation would then be overlaid over our modular
framework, which might help parallel computation through a clearer model
structure. But by itself, the modular structure does nothing to either aid or
hinder parallel computation. In light of this, issues of atomic data access and
conflict resolution do not apply to our current implementation.

The stochastic nature of most biomedical models presents other oppor-
tunities for distributed computation. Namely, because stochastic models are
typically simulated tens or hundreds of times using aggregate statistics to
analyze model behavior, these different simulations can be carried out si-
multaneously on separate computers or processors.

Data Availability.Our simulator is released as open-source software under the
Apache License version 2 (https://www.apache.org/licenses/LICENSE-2.0.txt).
It has been packaged for distribution via Python’s standard package manager,
“pip,” and is available on the Python Package Index under the name “nlisim”

(https://pypi.org/project/nlisim/). A docker container with a complete environment
for the simulator is available at https://hub.docker.com/r/nutritionallungimmunity/
nlisim. Source code for the simulator is maintained on the public GitHub repository
(https://github.com/NutritionalLungImmunity/nlisim). All other study data are
included in the article.
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